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We calculated the proton-transfer rate constant from a super photoacid, 5,8-dicyano-2-naphthol (DCN2), to
a protic solvent as a function of temperature. Previously, we found that the temperature dependence of the
proton-transfer rate constant is explained as a continuous transition from nonadiabatic to solvent-controlled
limits. The model we used to calculate the proton-transfer rate constant is based on a diffusive propagation
of the solvent configuration along a generalized solvent coordinate from the reactant potential surface toward
the crossing point with the product potential surface. The proton transfer occurs at the crossing point, and the
rate is calculated by a sink term placed at the crossing point. The sink term includes the solvent velocity and
the Landau-Zener transmission coefficient. Both the diffusion constant and the Landau-Zener transmission
coefficient depend on the dielectric relaxation of the solvent. The calculations are compared with the
experimental data and an interpolation expression that bridges the nonadiabatic limit and the solvent-controlled
limit.

Introduction

In their excited state, photoacids and photobases are stronger
acids or bases, respectively. Excitation of these compounds in
a solution of protic solvents enables the study of the dynamics
of the proton-transfer reaction of acids and bases in solution.1-6

In recent papers,7-10 we described our experimental results
on an unusual temperature dependence of excited state proton
transfer from a super photoacid (5,8-dicyano-2-naphthol, DCN2)
to several monols, diols, and a glycerol. At relatively high
temperatures, the rate of proton transfer is almost temperature-
independent, while at relatively low temperatures, the rate
exhibits large temperature dependence and the rate constant
value is similar to the inverse of the dielectric relaxation time.
We proposed a simple stepwise model to describe and calculate
the temperature dependence of the proton transfer to the solvent.
The model accounts for the large difference in the temperature
dependence of the proton-transfer rate at high and low temper-
atures.

The temperature dependence of the rate constant for proton
transfer to the protic solvent is explained as a continuous
transition from nonadiabatic (high temperature) to solvent-
controlled (low temperature) proton transfer. This phenomenon
can be described by the Landau-Zener curve-crossing for-
mula11,12 for the proton-transfer rate constant.

The theoretical analysis for the solution-phase proton-transfer
reaction was undertaken by Dogonadze, Kuznetzov, Ulstrup,
and co-workers13-17 and then extended by Borgis and Hynes,18

Cukier,19 and Voth.20 These theories suggest that when a
potential energy barrier is present in the proton-reaction
coordinate, the reaction pathway involves tunneling through the
barrier, as opposed to passage over the barrier. The proton
transfer can be described as a quantum tunneling between two
wells formed by two interacting electronic states. The transfer
of the proton, from one well to the other, is associated with a

change of electronic state of the system. The crossover between
the electronic states can only occur when the proton tunnels
through the barrier.

Conventional Landau-Zener (LZ) theory11,12 provides an
accurate description of the process in the absence of interaction
with the environment. It is applicable if the motion in the vicinity
of the crossing point is nearly uniform (ballistic).21,22 The
interaction of the particle with the environment causes compli-
cations.

The curve-crossing problem in the presence of dissipation
has been studied extensively.23-31 Expressions for the transition
rate of various physical limits have been derived. When the
coupling,V, between the diabatic terms is the smallest parameter
of the system, the dynamics in the crossing region in this
nonadiabatic limit is fast, the tunneling rate is the rate-limiting
step, and the reaction rate is given by the Fermi Golden Rule
expression.

When the coupling between the diabatic states is larger than
kBT, the adiabatic representation of the coupled potential energy
surfaces is adequate, the upper adiabatic potential surface plays
a negligible role, and the rate expression is given by the standard
transition state theory (TST) formula.

Another physical limit is realized whenV e kBT and the
interaction with the environment is strong enough. In this
solvent-controlled limit, the rate is inversely proportional to the
solvent relaxation time (friction) and is independent of the
couplingV.

A number of attempts have been made to bridge these
physical limits. Zusman23 derived an expression for the rate,
bridging the nonadiabatic limit and the solvent-controlled limit.
Rips and Jortner have used a simple physical argument to obtain
a rate expression that bridges all three limits.27 They assumed
that the crossover could be described in terms of a single
dimensionless parameter, the ratio of the mean-free path and
the root-mean-square displacement of the reaction coordinate.

In this study, we use a simple model to calculate the
temperature dependence of the proton-transfer rate constant and

* Corresponding author. E-mail: huppert@tulip.tau.ac.il. Fax/phone:
972-3-6407012.

7462 J. Phys. Chem. A2002,106,7462-7467

10.1021/jp025681u CCC: $22.00 © 2002 American Chemical Society
Published on Web 07/20/2002



compare the results with experimental measurements described
in our previous papers.7-10 The model is based on a diffusive
propagation of solvent configuration along a generalized solvent
coordinate potential surface. The potential surface is constructed
by a cusped double well potential. The proton transfer is
modeled by introducing a sink term that includes both the LZ
transmission coefficient and the average solvent configuration
velocity.

Modeling of the Proton Transfer to the Solvent. The
reaction of proton transfer to the solvent can be described
schematically:

The reactant is an intermolecular hydrogen-bonded complex
between an excited photoacid, AH*, and a solvent molecule,
SB. SB serves as a base, characterized by a hydrogen bond to
the photoacid and also to other solvent molecules. In water,
this specific water molecule, SB, has three hydrogen bonds to
three water molecules. To form the product, A‚‚‚HSB

+, in
water, one hydrogen bond of SB to a water molecule must be
broken. Thus, relatively long-range reorganization of the
hydrogen bond network takes place upon proton transfer to the
solvent. This complex rearrangement, to accommodate the
product, is probably the reason for a slow solvent generalized
configuration motion which corresponds to a low-frequency
component in the solvent dielectric spectrum. Its time constant
is close to the slow component of the dielectric relaxation time.
According to Kuznetsov and co-workers,13-17 Borgis and
Hynes,18 Bernstein and co-workers,32 and Syage,33 a second
important coordinate should be taken into account. This second
coordinate is the distance between the two heavy atoms, O-H‚
‚‚O in our case. This distance is modulated by a low-frequency
vibrational mode,Q.18,32The proton tunnels through the barrier
from the reactant well to the product well via the assistance of
the low frequency,Q, mode whenever the solvent configuration
equalizes the energies of the reactant and the product.

Borgis and Hynes18 derived an expression for the proton-
transfer rate constant,k. They wrote an expression fork in a
transition state theory form.k is expressed as the average one-
way flux along the solvent coordinate, through the crossing point
Sq of the two free energy surfaces, with the inclusion of a
transmission coefficient,κ, giving the probability of a successful
curve crossing:

whereS is the generalized solvent coordinate,Ṡ is the solvent
velocity, andΘ(Ṡ) is the step function. The brackets denote
averaging over the classical solvent distribution normalized by
the partition function of the solvent.

To find the appropriate nonadiabatic transmission coefficient,
κ, for use in this equation, Borgis and Hynes18 used the general
Landau-Zener (LZ) transmission coefficient,κ, adapted for the
present problem. The LZ factor, appropriate for a positive
velocity approach to the crossing point, is

where

is the adiabaticity parameter. The expression for the transmission

coefficientκ includes multiple passage effects on the transition
probability. V is the coupling matrix element between the
reactant and the product, and∆F is the slope difference of the
diabatic potentials of mean force at the crossing point,∆F )
kS, wherekS is the parabolic potential surface force constant.
Whenγ , 1, one obtains the nonadiabatic limit result

leading to

in which ∆Gq is the Marcus activation free energy

The adiabaticity parameter,γ (see eq 3), depends on the potential
surfaces curvature,∆F, the coupling,|V|2, and the velocity in
the vicinity of crossing,Ṡ. |V|2 is independent of temperature.
The solvent velocity,Ṡ, on the other hand, strongly depends on
the temperature. In our previous papers, we suggested thatṠ is
related to the slow components of the solvent relaxation. On
the basis of the experimental data, we infer thatṠ) b/τD, where
τD is the solvent dielectric relaxation time34 andb is an empirical
factor, dependent on the specific protic solvent, and its value is
between 1 and 4. In all the solvents used,τD depends, nearly
exponentially, on the temperature. The activation energy ofτD

for these solvents ranges from 12 (methanol) to 48 kJ/mol
(glycerol). Thus, for glycerol and long chain diols,τD changes
by about 3 orders of magnitude within the temperature range
studied,∆T = 120 K

The adiabaticity parameter,γ, is small at high temperatures and
large at low temperatures. For the solvents used in the
experiments, the value ofγ as a function of the temperature
increases smoothly from a value close to 0, i.e.,γ , 1 (the
nonadiabatic limit) to a valueγ . 1 (the adiabatic limit).

In the adiabatic limit,V . kBT, κ ≈ 1, the adiabatic rate
expression is

whereωS is the solvent high-frequency response, which can be
expressed via the average thermal rotational frequency of the
polar solvent27,35 or can be determined experimentally36 from
the ultrafast inertial part of the solvation time-correlation
function.∆GAD

q = ∆GNA
q - V is the free energy of activation.

Another physical limit is realized whenV e kBT and the
interaction with the environment is strong enough. In this
solvent-controlled limit, the rate is inversely proportional to the
solvent relaxation time (friction) and independent of the coupling
V. Rips and Jortner29 derived an expression for the resonant
(symmetric, ∆G ) 0) electron-transfer rate in the solvent-
controlled limit

For the nonresonance cases, the prefactor in the rate expression
(eq 9) only changes by about 20%.τL is the longitudinal

κ = 2γ (4)

kNA ) 2π
p

|V|2( â
4πES

)1/2
exp(-â∆GNA

q ) (5)

∆GNA
q ) 1

4ES
(ES + ∆G)2 (6)

γ ∝ τD(T); τD ) τD
0eEa/RT (7)
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dielectric relaxation time,τL ) (ε∞/εS)τD, whereε∞ andεS are
the high-frequency and static dielectric constant, respectively.

The preexponent depends on the solvent’s dynamical proper-
ties. At low temperatures, we found that the preexponential
factor in the solvent-controlled limit is related to the slowest
component of the dielectric relaxation time. We also found that
the temperature dependence of the proton transfer can be
explained as a continuous transition from the nonadiabatic limit
at high temperature to the solvent-controlled limit at low
temperature.

In our previous papers, we used the mean-first-passage
expression to bridge between the nonadiabatic limit and the
solvent-controlled limit to obtain the rate expression:

wherekPT is the overall rate andkNA andkSC are given by eqs
5 and 9.

In this paper, we take a different course to obtain a
temperature-dependent proton transfer rate constant that con-
tinuously changes from the nonadiabatic limit to the solvent-
controlled limit as the temperature decreases.

Figure 1 schematically shows the model for the calculation
of the proton-transfer rate. The model includes the following
building blocks and assumptions. We use two crossing parabolic
potential surfaces representing the free energy of the reactant
and product along the solvent coordinate. For numerical
calculation purposes, we focus our attention on the reactant
single-well parabolic potential surface in the generalized solvent
coordinate. The numerical calculation is based on the diffusive
propagation of the solvent generalized coordinate from the
equilibrium position of the reactant well to the crossing point.
We solve the Debye-Smoluchowski equation (DSE) for the
specific problem. The probability density function,p(S,t), to find
a solvent configuration,S, along the generalized solvent

coordinate at timet obeys the DSE23,37,38

whereD is a diffusion constant andU(S) is the potential surface.
In the numerical calculation, we used

wherekS ) 2ES andS is the generalized and normalized solvent
coordinate. In this solvent coordinate, the reactant and product
equilibrium positions are atSr ) 0 andSp ) 1, respectively.ES

is the solvent reorganization energy. For methanol, we usedES

) 0.3 eV. The calculation’s initial condition is a thermal
equilibrium of the probability density function,p(S), of the
solvent coordinate of the reactant and is given by a Gaussian
distribution centered at the minimum of the reactant well

where〈S2〉 is the mean square displacement, with a Gaussian
width U(〈S2〉) ) x2ESkBT.

The diffusion constant,D, is related to the dielectric relaxation
time, τD, and the widths of the Gaussian initial distribution,37

D ) (〈S2〉/2τD). For ES ) 0.3 eV, 〈S2〉 = 0.16 at room
temperature.

The activation energy,∆Gq, to cross between the reactant
well and the product well is determined from the experimental
activation energy, measured at high temperatures (the nonadia-
batic limit). For methanol and glycerol,∆Gq ≈ 2.5 kJ/mol. The
position of the activation barrier is determined by∆Gq ) U(S)q

andSq ) 0.22.
The next step in the calculation is based upon solving the

DSE of a single parabolic potential surface with the relevant
initial and boundary conditions. To solve it, we used a
modification of a user-friendly graphic program, SSDP (Ver.
2.61), of Krissinel and Agmon.39 The modification is based on
using the Landau-Zener transmission coefficient,κ(eq 2), in
the sink term at the crossing point between the reactant well
and the product well. The boundary condition at the crossing
point is given by

The boundary condition eq 14 we chose has ingredients similar
to those of the expression for the rate constant, expressed in a
transition state theory form eq 1. The average solvent velocity
is proportional to 1/τD, κ appears in both expressions, andk0 is
a numerical factor, independent of temperature and determined
by fitting the numerical solution to the experimental proton-
transfer rate constant at high temperatures.

Finally, the proton-transfer rate constant is obtained from the
slope of the plot of ln(p) versus time. Figure 2 shows the
experimental results along with the calculated results using the
DSE for the proton-transfer reaction from DCN2 to a methanol
(2a) and glycerol (2b) solutions as a function ofT -1. Full circles
are the computed rates; open circles are the experimental rates.
The solid line is a calculation on the basis of the mean-first-

Figure 1. Schematic representation of the potential surfaces of both
the reactant and product along the generalized solvent coordinate.
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passage expression eq 10. The relevant parameters for the
calculation using the diffusion model are given in Table 1.

The rate constant calculated using the interpolation equation
eq 10 the solid line in Figure 2 also gives a good fit to the
experimental data.

The free adjustable parameter in the calculation isγ ′

We find that γ ′ ) 4.5 × 108 s-1 from the best fit to the
experimental data for the rate of proton transfer of DCN2 to a
methanol solution andγ ′ ) 3 × 108 s-1 for the glycerol
solution. Figure 3 showsκ(T) as a function of 1/T for the proton-
transfer reaction in methanol (3a) and for glycerol (3b). For a
methanol solution, we findκ ) 0.5 at 200 K andτD ≈ 1000 ps.

Discussion

Conventional Landau-Zener (LZ) theory11,12 provides an
accurate description of the process in the absence of interaction
with the environment. It is applicable if the motion in the vicinity
of the crossing point is nearly uniform (ballistic).21,22 The
interaction of the particle with the environment causes compli-
cations.

Rips and Pollak30 showed that variational transition state
theory (VTST) allows for the identification of a collective
coordinate along which the dynamics in the curve-crossing
region is maximally separated from the remaining solvent
induced dynamics (quasiballistic). The problem of calculation
of the transition rate can then be handled using conventional
LZ theory. The resulting theory reduces to the respective three
above-mentioned physical limits.

In this paper, we calculate the proton transfer rate constant,
as a function of temperature, using the DSE and proper boundary
condition. Previously7,8,9,10 we used an interpolation equation
(eq 10) that bridges between the nonadiabatic limit and the
solvent-controlled limit to calculate the temperature dependence
of the proton-transfer rate constant. Both ways of calculating
the rate of proton transfer in the transition region between the
nonadiabatic limit and the solvent-control limit are based on
the behavior of the rate constant in both limiting cases. Both
calculations give a good fit to the experimental results.

At high temperatures, (the nonadiabatic limit in our experi-
ments) the solvent motion is fast, the activation energy is
sufficiently low, and the proton-tunneling rate is the rate-
determining step. The LZ transmission coefficient is small and
hence limits the rate of population transfer to the product
(crossing to the product diabatic potential surface). From the
rate constant at high temperatures (the nonadiabatic limit, eq
5), we determine the preexponential factor and the activation
energy of the process. According to the Marcus theory, the
activation energy is determined by∆G andES (eq 6).

Figure 2. Semilogarithmic plot of the proton-transfer rate constant from DCN2 to solvent vsT -1: (a) methanol and (b) glycerol. Open circles,
experimental data; close circles,calculation according to our diffusive model and LZ boundary condition; solid line, the interpolation formula using
eq 10.

TABLE 1: Relevant Parameters for Model Calculationsa

τD (298 K)
[ps]

k0

[Å/ns] γ ′
D(298 K)
[cm2/s]

MeOH 50 1.35× 103 4.5× 108 3.2× 10-7

glycerol 6.5× 103 0.60× 103 3.0× 108 2.4× 10-9

a For calculation with the SSDP program,39 we used the solvent
coordinate in length dimension of Angstroms. Solvent reorganization
energy,ES ) 0.3 eV. Activation energy,∆Gq ) 0.024 eV. Crossing
point position between the two diabatic potential surfaces,Sr ) 0 and
Sp ) 1 Å. We placed the minima of the reactant and product potential
surfaces at 0 and 1 Å respectively. Dielectric relaxation time at 298 K.
k0 is a numerical factor, independent of temperature and determined
by fitting the numerical solution to the experimental proton-transfer
rate constant at high temperatures.γ ′ is a free adjustable parameter,γ
) γ′τD(T) (eq 15). The calculated value ofγ ′ is larger by∼2 than the
actual value used in the fit in Figure 2. The diffusion coefficient is
calculated by37 D ) (〈S2〉/τD), 〈S2〉 ) 0.16 is the mean square
displacement,U〈S2〉 ) x2ESkBT and U〈S〉 ) (1/2)kSS2, wherekS )
2ES.

γ ) γ ′τD(T) (15)
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The preexponential factor is mainly determined by the value
of the coupling matrix element. The transmission coefficient
from the reactant well to the product well at the crossing point
(at the top of the barrier) is given by the Landau-Zener
transmission coefficient (eq 2). The adiabaticity parameter,γ
(eq 3), is determined by three parameters,|V|2, ∆F, andṠ. |V|2
can be evaluated from the experimental high-temperature rate
constant. We find that the preexponential factor is 3× 1010

s-1. From the preexponential expression, we evaluateV to be 2
cm-1 and (2π/p)|V|2 = 10-10 Js-1. ∆F ) kS, wherekS is the
mean force constant, which is related to the solvent reorganiza-
tion energy,kS ) 2ES. For methanol, we used reorganization
energy,ES ) 0.3 eV. To quantitatively evaluate the adiabaticity
parameter,γ ) γ ′τD, we usedγ ′ ) (2π/p)|V2|1/∆F = 109 s-1.
The calculated value ofγ ′ is only larger by about a factor of 2
than the value we used as a fitting parameter in the actual
calculation of the temperature dependence of the experimental
proton-transfer rate constant shown in Figure 2.

At a low enough temperature, (the solvent-controlled limit),
the diffusive propagation of the solvent configuration toward
the crossing region is slow compared to the tunneling rate. The
LZ transmission coefficient is close to one since the average
solvent velocity is slow (eq 3) and the rate-determining step is
the transport motion of the probability density function of the
solvent configuration itself, which appears also in the sink term
(eq 14). The activation energy of the solvent coordinate remains
small but the diffusion constant exhibits large temperature
dependence. In the solvent-controlled limit rate expression (eq
9), the preexponential factor of the proton-transfer rate constant
is determined by the average solvent velocity at the crossing
point, Ṡ) b/τD, whereb is an empirical factor. For a methanol
solution it is about 2.2, and for glycerol it is about 1.

As previously mentioned, the longest dielectric relaxation
time,τD(T), is approximately exponential with the temperature.34

The activation energy ofτD(T) for methanol and glycerol is 12
and 48 kJ/mol respectively. At 295 K, the dielectric relaxation
for glycerol is about 100 times slower,τD ≈ 6.5 ns, than that

of methanol,∼50 ps. For both solvents, the proton transfer from
DCN2 to the solvent shows the same general behavior of
temperature dependence. At high temperatures, the rate constant
is almost temperature independent (low activation energy), while
at low temperatures, the temperature dependence is large and
follows the dielectric relaxation time. Since the two solvents
differ drastically in their dielectric relaxation characteristic time
and temperature dependence, the proton transfer rate also differs
drastically between the two solvents. In glycerol, the transition
from the nonadiabatic proton-transfer limit to the solvent-
controlled limit occurs at much higher temperatures. From the
calculation of the proton-transfer rate constant of DCN2 in
glycerol, we find thatκ ) 0.5 atT ) 330 K andτD ) 800 ps.
For methanol, the midpoint (κ ) 0.5) occurs at much lower
temperature, 200 K andτD ) 1000 ps. The temperature
dependence of the proton transfer rate in the solvent-controlled
limit for glycerol has an Arrhenius dependence with a slope of
48 kJ/mol, while for methanol, it is only 12 kJ/mol, exactly the
same as that of the dielectric relaxation time of these solvents.

Our experimental findings show that the activation energy
of the proton-transfer process from DCN2 to protic solvents,
like alcohols, is rather small,∆GNA

q ≈ 2.5 kJ/mol. Rips and
Jortner40 discussed the applicability of electron transfer theory
to small activation barriers (∆Gq ≈ kBT) or even the activa-
tionless case. They found that the theory is applicable even to
these extreme cases. When the activation energy is low, the
crossing rate depends on the initial preparation of the solvent
configuration and the reactant potential surface (see Figure 1).
In proton transfer, from photoacids to the solvent, the excitation
of the molecule from its ground state (equilibrium solvent
configuration distribution) to the excited state usually prepares
a nonequilibrium solvent configuration distribution in the excited
state. The position of the initial distribution depends on the
photon energy. In such a case, the proton-transfer rate might
be altered with respect to the case of an initial distribution
located at the equilibrium position (the minimum of the potential
surface of the generalized solvent coordinate). In our experi-

Figure 3. Calculated Landau-Zener transmission coefficient as a function ofT-1 for the proton-transfer reaction from DCN2 to (a) methanol and
(b) glycerol.
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mental study,7-10 we used several excitation wavelengths to look
at the effect of preparation of the excited state on the proton
transfer rate. We found only minor effects on the proton-transfer
rate constant and the fluorescence signal in general.
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