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Proton Transfer from Photoacid to Solvent

Boiko Cohen, Jonathan Segal, and Dan Huppert*

Raymond and Berly Sackler Faculty of Exact Sciences, School of Chemistry, diel Yniversity,
Tel Aviv 69978, Israel

Receied: February 24, 2002; In Final Form: June 4, 2002

We calculated the proton-transfer rate constant from a super photoacid, 5,8-dicyano-2-naphthol (DCN2), to
a protic solvent as a function of temperature. Previously, we found that the temperature dependence of the
proton-transfer rate constant is explained as a continuous transition from nonadiabatic to solvent-controlled
limits. The model we used to calculate the proton-transfer rate constant is based on a diffusive propagation
of the solvent configuration along a generalized solvent coordinate from the reactant potential surface toward
the crossing point with the product potential surface. The proton transfer occurs at the crossing point, and the
rate is calculated by a sink term placed at the crossing point. The sink term includes the solvent velocity and
the Landat-Zener transmission coefficient. Both the diffusion constant and the Latifiaer transmission
coefficient depend on the dielectric relaxation of the solvent. The calculations are compared with the
experimental data and an interpolation expression that bridges the nonadiabatic limit and the solvent-controlled
limit.

Introduction change of electronic state of the system. The crossover between
the electronic states can only occur when the proton tunnels
{hrough the barrier.

Conventional LandauZener (LZ) theory®12 provides an
accurate description of the process in the absence of interaction
with the environment. It is applicable if the motion in the vicinity
of the crossing point is nearly uniform (ballisti&)22 The
"hteraction of the particle with the environment causes compli-

In their excited state, photoacids and photobases are stronge
acids or bases, respectively. Excitation of these compounds in
a solution of protic solvents enables the study of the dynamics
of the proton-transfer reaction of acids and bases in soldition.

In recent papers,° we described our experimental results
on an unusual temperature dependence of excited state proto
transfer from a super photoacid (5,8-dicyano-2-naphthol, DCNZ2) cations
to several monols, diols, and a glycerol. At relatively high Th ' i . blem in th f dissipati
temperatures, the rate of proton transfer is almost temperature- € curve-crossing pro eanlw In the presence ol dissipation
independent, while at relatively low temperatures, the rate has been S.tUd'ed eXtenS'V.éFY' Expressions for_the transition
exhibits large temperature dependence and the rate constan'iate c_>f various physical I_|m|ts_ have b_een derived. When the
value is similar to the inverse of the dielectric relaxation time. coupling,V, between the dlapatlc_ terms is the fsmalles.t parameter
We proposed a simple stepwise model to describe and calculateOf the' systgm, Fh.e dynamics in the crossing region in .th's
the temperature dependence of the proton transfer to the solvent.non"’1d|abatIC limit IS fast, th? tur_mellng rate is the_ rate-limiting
The model accounts for the large difference in the temperatureStep’ and the reaction rate is given by the Fermi Golden Rule

dependence of the proton-transfer rate at high and low temper_expressmn. . . . .
atures. When the coupling between the diabatic states is larger than

The temperature dependence of the rate constant for protonkBT’ the a_diabatic representation of_the c_oupled p_otential energy
transfer to the protic solvent is explained as a continuous surfac_e; is adequate, the upper ad|at_)at|9 pqtentlal surface plays
transition from nonadiabatic (high temperature) to solvent- a negligible role, and the rate expression is given by the standard

controlled (low temperature) proton transfer. This phenomenon transition state ‘,heor}’ (,TST) formula.

can be described by the LandaZiener curve-crossing for- . Another physical limit is realized whe¥ < kT and the

mulaL12for the proton-transfer rate constant. interaction with the environment is strong enough. In this
The theoretical analysis for the solution-phase proton-transfersowem'comroued I'm't’ the.ra.te IS mver_sely proportional to the

reaction was undertaken by Dogonadze, Kuznetzov, UIstrup,SOIVem relaxation time (friction) and is independent of the

and co-worker$-17 and then extended by Borgis and Hynrés, couplingV. .
Cukier® and Voth?® These theories suggest that when a A number of attempts have been made to bridge these

potential energy barrier is present in the proton-reaction Physical limits. Zusmadt derived an expression for the rate,

coordinate, the reaction pathway involves tunneling through the brjdging the nonadiabatic limit gnd the solyent-controlled limit. .
barrier, as opposed to passage over the barrier. The protonRiPS and Jortner have used a simple physical argument to obtain
transfer can be described as a quantum tunneling between twdf fate expression that bridges all three linift3hey assumed

wells formed by two interacting electronic states. The transfer that the crossover could be described in terms of a single
of the proton, from one well to the other, is associated with a dimensionless parameter, the ratio of the mean-free path and
the root-mean-square displacement of the reaction coordinate.
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compare the results with experimental measurements describeaoefficientx includes multiple passage effects on the transition
in our previous papers.1° The model is based on a diffusive  probability. V is the coupling matrix element between the
propagation of solvent configuration along a generalized solvent reactant and the product, andr is the slope difference of the
coordinate potential surface. The potential surface is constructeddiabatic potentials of mean force at the crossing paki,=
by a cusped double well potential. The proton transfer is ks, whereks is the parabolic potential surface force constant.
modeled by introducing a sink term that includes both the LZ Wheny < 1, one obtains the nonadiabatic limit result
transmission coefficient and the average solvent configuration
velocity. Kk=2y (4)
Modeling of the Proton Transfer to the Solvent. The
reaction of proton transfer to the solvent can be describe
schematically:

d leading to

kna = %ﬂlvf(%Es)u2 exp(-pAG,) ®)

A*H -+-S— Ai*"'Hsg

The reactant is an intermolecular hydrogen-bonded complexin Which AG' is the Marcus activation free energy
between an excited photoacid, AH*, and a solvent molecule, 1
Ss. Sg serves as a base, characterized by a hydrogen bond to AG;, = E(ES + AG)? (6)
the photoacid and also to other solvent molecules. In water, S
this specific water molecule,gShas three hydrogen bonds to
three water molecules. To form the product;-:MS;, in
water, one hydrogen bond of$o a water molecule must be
broken. Thus, relatively long-range reorganization of the
hydrogen bond network takes place upon proton transfer to the
solvent. This complex rearrangement, to accommodate the
product, is probably the reason for a slow solvent generalized
configuration motion which corresponds to a low-frequency
component in the solvent dielectric spectrum. Its time constant
is close to the slow component of the dielectric relaxation time.
According to Kuznetsov and co-workeis? Borgis and
Hynes!® Bernstein and co-workef,and Syagé? a second
important coordinate should be taken into account. This second
coordinate is the distance between the two heavy atom$]-O
--Oin our case. This distance is modulated by a low-frequency
vibrational modeQ.832The proton tunnels through the barrier
from the reactant well to the product well via the assistance of
the low frequencyQ, mode whenever the solvent configuration
equalizes the energies of the reactant and the product.

Borgis and Hyne'$ derived an expression for the proton-
transfer rate constank, They wrote an expression férin a
transition state theory fornk is expressed as the average one-
way flux along the solvent coordinate, through the crossing poin
S of the two free energy surfaces, with the inclusion of a
transmission coefficienk, giving the probability of a successful
curve crossing:

k= [$9(53(S— SH(SS) A @ kap = (@427) exp(-BAGLp) 8)

The adiabaticity parameter (see eq 3), depends on the potential
surfaces curvatureAF, the coupling,|V|2, and the velocity in

the vicinity of crossingS |V|2 is independent of temperature.
The solvent velocityS, on the other hand, strongly depends on
the temperature. In our previous papers, we suggestethat
related to the slow components of the solvent relaxation. On
the basis of the experimental data, we infer ®at b/zp, where

7p is the solvent dielectric relaxation tiffendb is an empirical
factor, dependent on the specific protic solvent, and its value is
between 1 and 4. In all the solvents usegl,depends, nearly
exponentially, on the temperature. The activation energsyof
for these solvents ranges from 12 (methanol) to 48 kJ/mol
(glycerol). Thus, for glycerol and long chain diots, changes

by about 3 orders of magnitude within the temperature range
studied AT = 120 K

yOu(T); 15 =1pe™ (7)

The adiabaticity parametey, is small at high temperatures and
large at low temperatures. For the solvents used in the
experiments, the value gf as a function of the temperature
t increases smoothly from a value close to 0, hes< 1 (the
nonadiabatic limit) to a valug > 1 (the adiabatic limit).
In the adiabatic limily > kgT, ¥ & 1, the adiabatic rate
expression is

whereSis the generalized solvent coordinaBis the solvent ~ Wherewsis the solvent high-frequency response, which can be
velocity, and@($) is the step function. The brackets denote €xpressed via the average thermal rotational frequency of the
averaging over the classical solvent distribution normalized by polar solvert’-3 or can be determined experimentéfiyrom

the partition function of the solvent. the ultrafast inertial part of the solvation time-correlation
To find the appropriate nonadiabatic transmission coefficient, function. AGs, = AG, — V is the free energy of activation.
«, for use in this equation, Borgis and HyAgssed the general Another physical limit is realized wheW =< kgT and the

Landau-Zener (LZ) transmission coefficient, adapted forthe  interaction with the environment is strong enough. In this
present problem. The LZ factor, appropriate for a positive solvent-controlled limit, the rate is inversely proportional to the

velocity approach to the crossing point, is solvent relaxation time (friction) and independent of the coupling
V. Rips and Jortné? derived an expression for the resonant
k=[1- 1/2 exp(y)] 1 — exp(y)] (2) (symmetric, AG = 0) electron-transfer rate in the solvent-
controlled limit
where
2 2 ko= Lo )" AG; 9
_2.7'[|V| _2.71|V| ¢ ™ 7 \ 16k T exp(—BAGya) 9)

y = —= . (3)
AAFS  AksS , .
For the nonresonance cases, the prefactor in the rate expression

is the adiabaticity parameter. The expression for the transmission(eq 9) only changes by about 20%. is the longitudinal
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coordinate at time obeys the DSE37:38

P _ 0 pue 9 _pue
=Pt e (11)

whereD is a diffusion constant and(S) is the potential surface.
In the numerical calculation, we used

_ U9 =2k
E Uy(9 = 5kd(S— S (12)
&

whereks = 2Es andSis the generalized and normalized solvent
coordinate. In this solvent coordinate, the reactant and product
equilibrium positions are & = 0 andS, = 1, respectivelyEs

is the solvent reorganization energy. For methanol, we &sed

= 0.3 eV. The calculation’s initial condition is a thermal
equilibrium of the probability density functiorp(S), of the
solvent coordinate of the reactant and is given by a Gaussian
distribution centered at the minimum of the reactant well

T 4 T v T T T T T T ¥ v T
-1.0 05 0.0 05 10 1.5 2.0 1 S
9= exg —

Solvent Coordinate peq( (2n[$2[)1/2 2[§

Figure 1. Schematic representation of the potential surfaces of both
the reactant and product along the generalized solvent coordinate. where [$0is the mean square displacement, with a Gaussian
width U(CB0) = /2EKsT.

dielectric relaxation timer,. = (e./es)Tp, Wheree,, andes are The diffusion constanD, is related to the dielectric relaxation
the high-frequency and static dielectric constant, respectively. time, 7o, and the widths of the Gaussian initial distributitn,
The preexponent depends on the solvent's dynamical proper-D = ((¥2rp). For Es = 0.3 eV, [F= 0.16 at room
ties. At low temperatures, we found that the preexponential {€mperature.
factor in the solvent-controlled limit is related to the slowest ~ The activation energyAG*, to cross between the reactant
component of the dielectric relaxation time. We also found that Well and the product well is determined from the experimental
the temperature dependence of the proton transfer can beactivation energy, measured at high temperatures (the nonadia-
explained as a continuous transition from the nonadiabatic limit Patic limit). For methanol and glycerohG* ~ 2.5 kJ/mol. The
at high temperature to the solvent-controlled limit at low Position of the activation barrier is determined dG* = U(S*
temperature. andS' = 0.22.
In our previous papers, we used the mean-first-passage The next step in the calculation is based upon solving the
expression to bridge between the nonadiabatic limit and the DSE of a single parabolic potential surface with the relevant

(13)

solvent-controlled limit to obtain the rate expression: initial and boundary conditions. To solve it, we used a
modification of a user-friendly graphic program, SSDP (Ver.
kna(Mksd(T) 2.61), of Krissinel and Agmo# The modification is based on
ko(T) = (10) using the LandatZener transmission coefficient(eq 2), in
kna(T) + ksd(T) the sink term at the crossing point between the reactant well

and the product well. The boundary condition at the crossing
wherekpr is the overall rate anbya andksc are given by eqs  point is given by

5 and 9.
In this paper, we take a different course to obtain a ap _
temperature-dependent proton transfer rate constant that con- 33@9 - kOKDp(g't) (14)
tinuously changes from the nonadiabatic limit to the solvent-
controlled limit as the temperature decreases. The boundary condition eq 14 we chose has ingredients similar

Figure 1 schematically shows the model for the calculation to those of the expression for the rate constant, expressed in a
of the proton-transfer rate. The model includes the following transition state theory form eq 1. The average solvent velocity
building blocks and assumptions. We use two crossing parabolicis proportional to Ip, x appears in both expressions, dgds
potential surfaces representing the free energy of the reactanta numerical factor, independent of temperature and determined
and product along the solvent coordinate. For numerical by fitting the numerical solution to the experimental proton-
calculation purposes, we focus our attention on the reactanttransfer rate constant at high temperatures.
single-well parabolic potential surface in the generalized solvent  Finally, the proton-transfer rate constant is obtained from the
coordinate. The numerical calculation is based on the diffusive slope of the plot of Inf) versus time. Figure 2 shows the
propagation of the solvent generalized coordinate from the experimental results along with the calculated results using the
equilibrium position of the reactant well to the crossing point. DSE for the proton-transfer reaction from DCN2 to a methanol
We solve the DebyeSmoluchowski equation (DSE) for the (2a) and glycerol (2b) solutions as a functiorilofl. Full circles
specific problem. The probability density functig{St), to find are the computed rates; open circles are the experimental rates.
a solvent configuration,S along the generalized solvent The solid line is a calculation on the basis of the mean-first-
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Figure 2. Semilogarithmic plot of the proton-transfer rate constant from DCN2 to solvemt¥s (a) methanol and (b) glycerol. Open circles,
experimental data; close circles,calculation according to our diffusive model and LZ boundary condition; solid line, the interpolation forghula us

eq 10.
TABLE 1. Relevant Parameters for Model Calculationst
0 (298 K) ko D(298 K)
[ps] [A/ns] y! [cm?/s]
MeOH 50 1.35x 108 45x 108 3.2x 1077
glycerol 6.5x 10° 0.60x 10° 3.0x10° 24x 10°

aFor calculation with the SSDP prograthywe used the solvent
coordinate in length dimension of Angstroms. Solvent reorganization
energy,Es = 0.3 eV. Activation energyAG* = 0.024 eV. Crossing
point position between the two diabatic potential surfages; 0 and
S =1 A. We placed the minima of the reactant and product potential
surfaces at 0 ahl A respectively. Dielectric relaxation time at 298 K.
ko is a numerical factor, independent of temperature and determined
by fitting the numerical solution to the experimental proton-transfer
rate constant at high temperaturgs.is a free adjustable parameter,
= y'tp(T) (eq 15). The calculated value of is larger by~2 than the
actual value used in the fit in Figure 2. The diffusion coefficient is
calculated by D = ((Bhp), [P0 = 0.16 is the mean square
displacementU(F0= ,/2EkT and USO= (1/2)ksS?, whereks =
2Es.

Discussion

Conventional LandauZener (LZ) theory*1? provides an
accurate description of the process in the absence of interaction
with the environment. It is applicable if the motion in the vicinity
of the crossing point is nearly uniform (ballisti&)?2 The
interaction of the particle with the environment causes compli-
cations.

Rips and Polla¥ showed that variational transition state
theory (VTST) allows for the identification of a collective
coordinate along which the dynamics in the curve-crossing
region is maximally separated from the remaining solvent
induced dynamics (quasiballistic). The problem of calculation
of the transition rate can then be handled using conventional
LZ theory. The resulting theory reduces to the respective three
above-mentioned physical limits.

In this paper, we calculate the proton transfer rate constant,
as a function of temperature, using the DSE and proper boundary
condition. Previousl{8%19we used an interpolation equation
(eq 10) that bridges between the nonadiabatic limit and the

passage expression eq 10. The relevant parameters for théolvent-controlled limit to calculate the temperature dependence

calculation using the diffusion model are given in Table 1.

The rate constant calculated using the interpolation equation
eq 10 the solid line in Figure 2 also gives a good fit to the
experimental data.

The free adjustable parameter in the calculatiop is

y=v'1p(T) (15)

We find thaty ' = 4.5 x 10 s! from the best fit to the
experimental data for the rate of proton transfer of DCN2 to a
methanol solution ang’’ = 3 x 1 s for the glycerol
solution. Figure 3 shows(T) as a function of I for the proton-
transfer reaction in methanol (3a) and for glycerol (3b). For a
methanol solution, we find = 0.5 at 200 K andp ~ 1000 ps.

of the proton-transfer rate constant. Both ways of calculating
the rate of proton transfer in the transition region between the
nonadiabatic limit and the solvent-control limit are based on
the behavior of the rate constant in both limiting cases. Both
calculations give a good fit to the experimental results.

At high temperatures, (the nonadiabatic limit in our experi-
ments) the solvent motion is fast, the activation energy is
sufficiently low, and the proton-tunneling rate is the rate-
determining step. The LZ transmission coefficient is small and
hence limits the rate of population transfer to the product
(crossing to the product diabatic potential surface). From the
rate constant at high temperatures (the nonadiabatic limit, eq
5), we determine the preexponential factor and the activation
energy of the process. According to the Marcus theory, the
activation energy is determined /G andEs (eq 6).
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Figure 3. Calculated LandauZener transmission coefficient as a functionTof for the proton-transfer reaction from DCN2 to (a) methanol and

(b) glycerol.

The preexponential factor is mainly determined by the value of methanol~50 ps. For both solvents, the proton transfer from
of the coupling matrix element. The transmission coefficient DCN2 to the solvent shows the same general behavior of
from the reactant well to the product well at the crossing point temperature dependence. At high temperatures, the rate constant

(at the top of the barrier) is given by the Landatener
transmission coefficient (eq 2). The adiabaticity parameter,
(eq 3), is determined by three paramet¢vs?, AF, andS. [V|2

is almost temperature independent (low activation energy), while
at low temperatures, the temperature dependence is large and

follows the dielectric relaxation time. Since the two solvents

can be evaluated from the experimental high-temperature ratediffer drastically in their dielectric relaxation characteristic time

constant. We find that the preexponential factor is 3L0™°
sL. From the preexponential expression, we evali4ie be 2
cmt and (2t/h)|V|2 = 10710 Js'1. AF = ks, whereks is the

and temperature dependence, the proton transfer rate also differs
drastically between the two solvents. In glycerol, the transition

from the nonadiabatic proton-transfer limit to the solvent-

mean force constant, which is related to the solvent reorganiza-controlled limit occurs at much higher temperatures. From the

tion energy,ks = 2Es. For methanol, we used reorganization
energy Es= 0.3 eV. To quantitatively evaluate the adiabaticity
parametery = y 'tp, we usedy ' = (2n/h)|V?|1/AF = 1P s,
The calculated value af ' is only larger by about a factor of 2

calculation of the proton-transfer rate constant of DCN2 in
glycerol, we find thatc = 0.5 atT = 330 K andrp = 800 ps.
For methanol, the midpointc(= 0.5) occurs at much lower

temperature, 200 K andp = 1000 ps. The temperature

than the value we used as a fitting parameter in the actual dependence of the proton transfer rate in the solvent-controlled
calculation of the temperature dependence of the experimentallimit for glycerol has an Arrhenius dependence with a slope of

proton-transfer rate constant shown in Figure 2.
At a low enough temperature, (the solvent-controlled limit),
the diffusive propagation of the solvent configuration toward

48 kJ/mol, while for methanol, it is only 12 kJ/mol, exactly the
same as that of the dielectric relaxation time of these solvents.
Our experimental findings show that the activation energy

the crossing region is slow compared to the tunneling rate. The of the proton-transfer process from DCN2 to protic solvents,
LZ transmission coefficient is close to one since the average like alcohols, is rather smalAGya* ~ 2.5 kJ/mol. Rips and
solvent velocity is slow (eq 3) and the rate-determining step is Jortnef® discussed the applicability of electron transfer theory
the transport motion of the probability density function of the to small activation barriersAG* ~ kgT) or even the activa-
solvent configuration itself, which appears also in the sink term tionless case. They found that the theory is applicable even to
(eq 14). The activation energy of the solvent coordinate remainsthese extreme cases. When the activation energy is low, the
small but the diffusion constant exhibits large temperature crossing rate depends on the initial preparation of the solvent
dependence. In the solvent-controlled limit rate expression (eqconfiguration and the reactant potential surface (see Figure 1).
9), the preexponential factor of the proton-transfer rate constantin proton transfer, from photoacids to the solvent, the excitation
is determined by the average solvent velocity at the crossing of the molecule from its ground state (equilibrium solvent
point, S= bitp, whereb is an empirical factor. For a methanol  configuration distribution) to the excited state usually prepares
solution it is about 2.2, and for glycerol it is about 1. a nonequilibrium solvent configuration distribution in the excited
As previously mentioned, the longest dielectric relaxation state. The position of the initial distribution depends on the
time, 7p(T), is approximately exponential with the temperaftfre.  photon energy. In such a case, the proton-transfer rate might
The activation energy afp(T) for methanol and glycerolis 12 be altered with respect to the case of an initial distribution
and 48 kJ/mol respectively. At 295 K, the dielectric relaxation located at the equilibrium position (the minimum of the potential
for glycerol is about 100 times slowerp ~ 6.5 ns, than that  surface of the generalized solvent coordinate). In our experi-
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mental study, 1°we used several excitation wavelengths to look  (16) German, E. D.; Kuznetsov, A. M. Chem. Soc., Faraday Trans.
at the effect of preparation of the excited state on the proton 2 198177, 2203. . . _
transfer rate. We found only minor effects on the proton-transfer o (-7 Kuznetsov, A. M.Charge Transfer in Physics, Chemistry and

rate constant and the fluorescence signal in general.
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